Noise contours are common for measuring noise around an airport. Noise contours give an indication of general noise levels and show an average noise reading over a set period of time. They use actual information on the position, number, heights and noise levels of arrivals and departures to and from Manchester. Noise contours look like a series of concentric rings, like in a tree trunk. The closer the rings are to the airport, the louder the noise is. This is represented by a number. Current Government guidelines recommend a tree trunk. The closer you live to an airport and a departure or arrival route, the more noise you will hear.

Generally, the closer that you live to an airport and a departure or arrival route, the more noise you will hear.

‘Noise contours’ give an indication of general noise levels and show an average noise reading over a set period of time. They use actual information on the position, number, heights and noise levels of arrivals and departures to and from Manchester. Noise contours look like a series of concentric rings, like in a tree trunk. The closer the rings are to the airport, the louder the noise is. This is represented by a number. Current Government guidelines recommend a tree trunk. The closer you live to an airport and a departure or arrival route, the more noise you will hear.

1. Phone our Freephone number 0800 0967967.
2. Send an email to community.relations@manairport.co.uk.
3. Come to an outreach session (details are on our website).
4. Look at the airspace change web page: www.manchesterairport.co.uk/airspacechange.
The accuracy with which an aircraft navigates depends on the following:

- The accuracy with which an aircraft navigates depends on the following.
- The accuracy with which an aircraft navigates depends on the following.
- The accuracy with which an aircraft navigates depends on the following.
- The accuracy with which an aircraft navigates depends on the following.
- The accuracy with which an aircraft navigates depends on the following.

The graphics below show the height of aircraft on the LIST02S route of the place marked on the route. They show the concentration of aircraft in the centre of the route and the height above sea level.

AIRCRAFT

- Open time, airlines may buy new aircraft.
- The improved engines are quieter and more efficient.
- The new dealers planes are able to climb quicker and with less friction, significantly reducing noise and emissions. All of this is beneficial to communities that the aircraft fly over.
- Aircraft currently using the LIST02S route range from small 10-seat aircraft up to the larger 40-seat aircraft.
- The most common is the 105- to 200- seat aircraft, which accounts for 61% of all flights.
- It is likely there will be changes in the future due to:
 - A national policy, led by the CAA, to encourage airports to improve efficiency and maintaining safety;
 - Satellite navigation replacing navigational aids on the ground, enabling aircraft to fly more accurately following the centre line of the departure route on each departure, and improved technology on board new aircraft offering the opportunity for greater efficiency and reduced noise.

AIRSPACE

A review of upper airspace (above 24,000 feet) is taking place. This will impact some of the main airways over the UK, to increase efficiency and improve the customer experience with less time in hold, more timely arrivals and departures and reduced emissions. The review process will also enable us to create the best possible design to make sure we can achieve Manchester Airport’s potential by securing further routes to destinations around the world. This will create more jobs and boost the region’s economy.

The change relate to three levels of airspace:
- High level – over 7,000 feet where aircraft are travelling to or from their final destination.
- Intermediate – 7,000 to 4,999 feet heading to the final destination airport.
- Departure – between 0 and 7,000 feet leaving the airport to join the high level routes.

ARRIVALS

- Aircraft currently approach the airport they are landing at and wait for an instruction to land. Ideally, the approach is a continuous descent to land as this is fuel efficient and quiet.
- If aircraft need to wait, they go into a ‘holding pattern’ away from the airfield. As a part of this project, NATS will commence if this is the best way to control aircraft approaching the airfield and before they land.

AIRSPACE

- Aircraft currently using the LIST02S route range from small 10-seat aircraft up to the larger 40-seat aircraft. The most common is the 105- to 200- seat aircraft, which accounts for 61% of all flights.
- The most common is the 105- to 200- seat aircraft, which accounts for 61% of all flights.
- The most common is the 105- to 200- seat aircraft, which accounts for 61% of all flights.
- The most common is the 105- to 200- seat aircraft, which accounts for 61% of all flights.
- The most common is the 105- to 200- seat aircraft, which accounts for 61% of all flights.

AIRSPACE

- Aircraft currently using the LIST02S route range from small 10-seat aircraft up to the larger 40-seat aircraft. The most common is the 105- to 200- seat aircraft, which accounts for 61% of all flights.
- The most common is the 105- to 200- seat aircraft, which accounts for 61% of all flights.
- The most common is the 105- to 200- seat aircraft, which accounts for 61% of all flights.
- The most common is the 105- to 200- seat aircraft, which accounts for 61% of all flights.
- The most common is the 105- to 200- seat aircraft, which accounts for 61% of all flights.