MEASURING NOISE

Generally, the closer that you live to an airport and a departure or arrival route, the more noise you will hear.

‘Noise contours’ give an indication of general noise levels and show an average noise reading over a set period of time. They use actual information on the position, number, heights and noise levels of arrivals and departures to and from Manchester. Noise contours look like a series of concentric rings, like in a tree trunk. The closer the rings are to the airport, the louder the noise.

There is a booklet like this one for each of our departure routes. Extra information is available on our website in a range of formats including films and downloadable information sheets.

If you would like to talk to us you could:

– phone our Freephone number (0800 961 7967);
– send an email to communityrelations@manairport.co.uk;
– come to an outreach session (details are on our website); or
– look at the airspace change web page www.manchesterairport.co.uk/airspacechange.

You can watch aircraft movements and look at heights and positions over the ground using webtrak, which is on our website at manchesterairport.co.uk/webtrak.
There are four routes with westerly departures shown on the program. These are used for an average 78% of our flights. In 2015 there were 26,158 departures on route SONEX1R (Runway 1) and route SONEX1Y (Runway 2) – 38% of all westerly departures.

Our information is based on the most recent complete year, which was 2015, and our busiest month in that year, August, compared to our quietest month, February.

The following graphics show the combined information from routes SONEX1R and SONEX1Y routes heading North and East travelling to Northern Europe and the Far East.

It is likely there will be changes in the future

100- to 200-seat aircraft, which accounts for 61% of the larger 600-seat aircraft. The most common is the Aircraft currently using the SONEX1R and SONEX1Y routes.

All of this is beneficial to communities.

A review of upper airspace (above 24,500 feet) is taking place. – Departure – between 0 and 7,000 feet leaving the airfield. As a part of this project, NATS will examine if this continuous descent to land as this is fuel efficient and quiet.

A review of upper airspace (above 24,500 feet) is taking place.

and with no westerly operations on the SONEX1R or SONEX1Y routes on seven days in February.

In 2015, August was our busiest month of westerly operations on the SONEX1R and SONEX1Y routes when there were…

During August there were

178 departures during the night period from 11pm to 6am.

During the night period from 11pm to 6am.

The maximum number of departures on a single day in August was

120 compared to a February total of only

96

During February there were

1576 departures

In February there were

178 compared to just…

During August there were

319 departures during the morning peak hours of 6am to 8am.

To understand the effect a route has on the community & file over, we have highlighted the number of days each month, over several years, when westerly departure routes were used.

The accuracy with which an aircraft navigates depends on the following:

– The size of the aircraft;
– What technology the aircraft has on board;
– Weather conditions;
– How the pilot interprets instructions.

The map opposite shows the general position and spread of flights using the SONEX1R and SONEX1Y routes in August 2015.

At the beginning of the departure, the aircraft is dark blue. As it becomes higher above the ground, the colour changes to light blue (5,000 feet) and finally to green (3,000 feet) and finally to the ground, the colour changes to green

Currently aircraft navigate using navigational equipment on the ground close to and around our runways. A series of instructions will navigate the aircraft along the whole route. For example, fly straight ahead for a set distance and then turn at a particular point to a compass bearing of…”.

Aircraft currently using the SONEX1R and SONEX1Y routes range from small 10-seat aircraft up to the larger 600-seat aircraft. The most common is the 100- to 200-seat aircraft, which accounts for 61% of all flights.

It is likely there will be changes in the future due to:

– a national policy, led by the CAA, to reorganise airspace for improved efficiency and maintaining safety;
– satellite navigation replacing navigational aids on the ground, enabling aircraft to fly more accurately following the centre line of the departure route on each departure;
– improved technology on board new aircraft offering the opportunity for greater efficiency and reduced noise.

Aircraft currently using the SONEX1R and SONEX1Y routes range from small 10-seat aircraft up to the larger 600-seat aircraft. The most common is the 100- to 200-seat aircraft, which accounts for 61% of all flights.

It is likely there will be changes in the future due to:

– a national policy, led by the CAA, to reorganise airspace for improved efficiency and maintaining safety;
– satellite navigation replacing navigational aids on the ground, enabling aircraft to fly more accurately following the centre line of the departure route on each departure;
– improved technology on board new aircraft offering the opportunity for greater efficiency and reduced noise.