Generally, the closer that you live to an airport and a departure or arrival route, noise contours are common for measuring noise around at 63 decibels. If you live in this area, you can apply for help with this noise insulation such as high performance glazing or loft insulation at Manchester. Noise contours look like a series of concentric rings, like in position, number, heights and noise levels of arrivals and departures to and from Manchester. Noise contours such as in webtrak, which is on our website – you can see them all at www.manchesterairport.co.uk/runwaydatasheet.

If you would like to talk to us you could:

– phone our Freephone number 08000 967967;
– send an email to community.relations@manairport.co.uk;
– come to an outreach session (details are on our website);
– you can see them all at www.manchesterairport.co.uk/soundinsulation.

You can watch aircraft movements and look at heights and positions over the ground using webtrak, which is on our website at www.manchesterairport.co.uk/webtrak.

WANT TO KNOW MORE?

There is a booklet like this one for each of our departure routes. Extra information is available on our website in a range of formats including films and downloadable information sheets.

If you would like to talk to us you could:
– phone our Freephone number 08000 967967;
– send an email to community.relations@manairport.co.uk;
– come to an outreach session (details are on our website);
– you can see them all at www.manchesterairport.co.uk/soundinsulation.

You can watch aircraft movements and look at heights and positions over the ground using webtrak, which is on our website at www.manchesterairport.co.uk/webtrak.
There are four routes with westerly departures shown on this map. They are used for an average 77% of our flights. In 2016 there were 20244 departures on route SANBA1R (Runway 1) and route SANBA1Y (Runway 2) – 28% of all westerly departures. Our information is based on the most recent complete year, which was 2016, and our busiest month in that year, July, compared to our quietest month, October.

The following graphics show the combined information from routes SANBA1R and SANBA1Y heading west and then south travelling to Southern Europe and London.

WILL THINGS CHANGE IN THE FUTURE?

AIRCRAFT

Over time, airlines will buy new aircraft. The improved engines are quieter and more efficient. The two-deck planes are able to climb quicker and with less friction, significantly reducing noise and emissions. All of this is beneficial to communities that the aircraft fly over.

Aircraft currently using the SANBA1R and SANBA1Y routes range from small 10-seat aircraft up to the larger 400-seat aircraft. The most common is the 100-200 seat aircraft, which carries for 8% of all flights.

It is likely there will be changes in the future due to:

- **A national policy, led by the CAA, to reorganise airspace for improved efficiency and maintaining safety**
- **Satellite navigation replacing navigational aids on the ground, enabling aircraft to fly more accurately following the centre line of the departure route on each departure, and improved technology on board new aircraft offering the opportunity for greater efficiency and reduced noise.**

AIRSPACE

A review of upper airspace (above 24,000 feet) is taking place. This will reposition some of the main airways over UK to increase efficiency and improve the customer experience. With less time in hold, more timely arrivals and departures and reduced emissions. This review process will also enable us to create the best possible design to make sure we can achieve Manchester Airport’s potential by ensuring further routes to destinations around the world. This will create more jobs and boost the region’s economy.

The changes relate to three levels of airspace:

- High level – over 7000 feet where aircraft are travelling to or from their final destination
- Arrival – below 7000 feet heading to the final destination airport
- Departure – between 0 and 7000 feet leaving the airport to join the high level routes

ARRIVALS

Aircraft currently approach the airport they are landing at and wait for an instruction to land. Ideally, the approach is a continuous descent to land as this is fuel efficient and quiet. If aircraft need to wait, they go into a ‘holding pattern’ away from the airfield. As part of this project, NATS will examine if this is the best way to control aircraft approaching the airfield and before they land.